Sculpturing with light: advanced processing of materials for optical and biological applications

Microfabricate and microstructure materials using fslaser and nonlinear optical processes

Microfabrication

 $1 \text{ fs} = 10^{-15} \text{ s}$

how short is a femtosecond pulse ?

Microfabrication

Very intense light

Laser intensities ~ 100 GW/cm² 1 x 10^{11} W/cm²

Laser pointer: 1 mW/cm² (1 x10⁻³ W/ cm²)

fs-laser micromachining

Very intense light

Nonlinear Optical Phenomena

Nonlinear Optics

high light intensity

anharmonic oscillator

nonlinear polarization response

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

Nonlinear Optics

 $\chi^{(3)}$ is a complex quantity

$$\chi^{(3)} = \operatorname{Re}(\chi^{(3)}) + \operatorname{iIm}(\chi^{(3)})$$

Related to intensity dependent refractive index

Related to two-photon absorption

Nonlinear Optics

Third order processes: $\chi^{(3)}$

Refractive process:

 $n=n_0+n_2I$

self-phase modulation
lens-like effect

Absorptive process:

 $\alpha = \alpha_0 + \beta I$

nonlinear absorption

two-photon absorption

Two-photon absorption

Phenomenon does not described for the Classical Physics and does not observed until the development of the Laser.

Theoretical model: Maria Göppert-Mayer, 1931

Two photons from an intense laser light beam are simultaneously absorbed in the same "quantum act", leading the molecule to some excited state with energy equivalent to the absorbed two photons.

Two-photon absorption

photon energy < bandgap

nonlinear interaction

nonlinear interaction

nonlinear interaction

multiphoton absorption

Multi-photon absorption

Nonlinear interaction provides spatial confinement of the excitation

fs-microfabrication

 $\alpha = \alpha_0 + \beta I$ $\alpha = \alpha_0$

Two-photon absorption

spatial confinement of excitation

femtosecond pulses

amplified laser oscillator

repetitive

cumulative

- fs-laser micromachining/microstructuring
- microfabrication via two-photon polymerization

fs-laser microstructuring experimental setup

fs-laser micromachining

microstructuring polymer: super hydrophobic surface

laser microfabrication: super hydrophobic surface

examples of fabricated surfaces

laser microfabrication: super hydrophobic surface

Superhydrophobic surfaces

flat surface

microstructured surface

microstructuring polymer

flat surface

 $\theta = 118^{\circ}$

microstructured surface

 $\theta = 160^{\circ}$

fs-laser micromachining

Generation of Ag nanoparticles

Generation of Ag nanoparticles

Silver doped barium borate glass (Ag:BBO)

Sample after irradiation with the amplified fs-laser (1 kHz) and subsequent thermal treatment at 400 C for 1 h

Sample after irradiation with the 5 MHz fs-laser

Generation of Ag nanoparticles

Absorption spectrum of the Ag:BBO sample as prepared (a), after irradiation with the 5 MHz fs-laser (b) and after irradiation with the amplified fs-laser (1 kHz) and subsequent thermal treatment.

Waveguides fabrication

Waveguides fabricated using the 5-MHz laser system (50 fs) with 37 nJ/pulse and $\,v$ = 10 $\mu m/s$

Waveguides fabrication

Coupling light into the waveguides

image of the waveguide output

Two-photon polymerization

Photopolymerization

Monomer + *Photoinitiator* \rightarrow *Polymer*

Two-photon polymerization

Photoinitiator is excited by *two-photon absorption*

 $R_{2PA} \propto I^2$

Two-photon polymerization setup

bellow the diffraction limit

even higher spatial resolution

30 μm x 30 μm x 12 μm cube

After the fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried

Microstructure fabricated by two-photon polymerization

Microstructures fabricated by two-photon polymerization

Doping microstructures

Microstructures containing active compounds

- Fluorescence
- Electro Luminescent
- Conductive

Do we have waveguiding in the microstructure ?

20 µm 🔳

Appl. Phys. Lett., 95 1133091-3 (2009)

20 µm 🔳

low index substrate

waveguiding of the microstructure fabricated on porous silica substrate (n= 1.185)

Applications: micro-laser; fluorescent microstructures; conductive microstructures

Microstructures with ZnO nanowires

Microstructures with ZnO nanowires

Microstructures with ZnO nanowires

Doping microstructures

• microstructures containing biopolymer - chitosan

micro-environment to study cells and bacteria

microfabrication of special microstructures to biology

• 3D cell migration studies in micro-scaffolds

SEM of the scaffolds

50 μm pore size Ľ.

• 3D cell migration studies in micro-scaffolds

Advanced Materials, 20, 4494-4498 (2008)

to study bacterial growth it was needed to develop **double doped microstructures**

microstructure containing Fluorescein and Rhodamine

(a) SEM of a double-doped microstructure (top view).(b) Confocal fluorescent microscopy image of the same microstructure.

Study the development of E. coli in micro-environments:

micro-environment in which the central structure contains antibiotic.

Study the development of E. coli in micro-environments:

after 3 hours, we observed that a small region around the doped structure does not show bacterial growth.

such inhibition zone was analyzed by determining the bacterial density in concentric rings

the density of bacteria grows monotonically with r_i

saturating when r_i reaches approximately 12 μm in about 0.7 bacteria/ μm^2

the inhibition zone has a maximum range of approximately 10 μ m, being more effective as one gets closer to the microstructure impregnated with ciprofloxacin

Bacteria microtraps

using micro-environments to study the dynamics of bacterial migration

Bacteria microtraps

Bacteria microtraps

using micro-environments to study the dynamics of bacterial migration

Optical circuit

Optical circuit

- microfabrication
- silica nanowires
- coupling microstructures

nanowires fabrication process

standard fiber

nanowires fabrication process

nanowires fabrication process

coupling light into nanowires

fiber taper silica nanowire

Manipulating the nanowires

(63)

Acknowledgments

Team

Juliana Almeida *Adriano Otuka Gustavo Almeida* Vinicius Tribuzi *Ruben Fonseca* Renato Martins Paulo H. D. Ferreira

www.fotonica.ifsc.usp.br

