Femtosecond laser pulses: nonlinear spectroscopy and microfabrication

Prof. Dr. Cleber R. Mendonça

Instituto de Física de São Carlos Universidade de São Paulo

Microfabrication

$$1 \text{ fs} = 10^{-15} \text{ s}$$

introduction

how short is a femtosecond pulse?

Microfabrication

Ti:Sapphire lasers

Very intense light

Laser intensities ~ 100 GW/cm² 1 x 10¹¹W/cm²

Laser pointer: 1 mW/cm² (1 x10⁻³ W/ cm²)

fs-laser micromachining

Ti:Sapphire lasers

100 fs 50 fs 20 fs

Very intense light

Nonlinear Optical Phenomena

Nonlinear Optics

high light intensity

E_{rad.}~ E_{inter.}

anharmonic oscillator

nonlinear polarization response

$$P = \varepsilon_0 \left(\chi^{(1)} E + \chi^{(2)} E^2 + \chi^{(3)} E^3 + \ldots \right)$$

Nonlinear Optics

 $\chi^{(3)}$ is a complex quantity

Related to intensity dependent refractive index

Related to two-photon absorption

Nonlinear Optics

Third order processes: $\chi^{(3)}$

Refractive process:

$$n = n_0 + n_2 I$$

- self-phase modulation
- lens-like effect

Absorptive process:

$$\alpha = \alpha_0 + \beta I$$

- nonlinear absorption
- two-photon absorption

Measuring nonlinear refraction

Z-scan: close aperture

$$n = n_0 + n_2 I$$

$$\left|\Delta Z_{pv}\right| \approx 1.7 Z_0$$

$$\Delta T_{pv} \cong 0.406(1-S)^{0.27} |\Delta \Phi_0|$$

$$\Delta\Phi_0 = \frac{2\pi}{\lambda} n_2 I_0 L_{eff}$$

Measuring nonlinear absorption

$$\alpha(I) = \alpha_0 + \beta I$$

$$\Delta T \propto \beta I$$

$$T(z) = \sum_{m=0}^{\infty} \frac{[-q_0(z,0)]^m}{(m+1)^{3/2}}$$

$$q_0(z,t) = \beta I_0 L / (1 + z^2 / z_0^2)$$

Nonlinear spectrocopy

nonlinear spectrum

Laser amplifier (Ti:Saphire)

 τ = 150 fs

 λ = 775 nm

 $E = 800 \mu J$

Optical parametric amplifier

 $\tau = 120 \text{ fs}$

 λ = 460 - 2600 nm

E= 20-60 μJ

Tungsten Lead-Pyrophosphate + Cu

 $70Pb_2P_2O_7$ - $30WO_3$ (in wt. %) for glass host + CuO (0.5 wt. %)

Table 1 Sample labels, synthesis conditions, and characteristic temperatures of PW glasses doped with CuO

	Sample labels Annealing conditions		Characteristic temperatures			
		T _{ht} (°C)	t _{ht} (min)	T _g (°C)	<i>T</i> _x (°C)	
(i) (ii) (iii) (iv)	PW-0 PW-5 PW-20 PW-60 PW-120	410) +	0 5 20 60 120	410	575	

Nonlinear refraction

fs-laser microfabrication

photon energy < bandgap

nonlinear interaction

fs-laser microfabrication

nonlinear interaction

fs-laser microfabrication

nonlinear interaction

multiphoton absorption

multiphoton absorption

nonlinear interaction

spatial confinement of excitation

two-photon absorption

$$\alpha = \alpha_0 + \beta I$$
$$R \propto I^2$$

feature exploited for microfabrication

femtosecond pulses

Ti:Sapphire lasers

1 fs =
$$10^{-15}$$
 s

Repetition rate

1 KHz

Energy

mJ

86 MHz

nJ

fs-micromachining

amplified laser

oscillator

heat diffusion time: $t_{\text{diff}} \sim 1 \ \mu \text{s}$

fs-micromachining

amplified laser

oscillator

low repetition laser

high repetition laser

repetitive

cumulative

what is the difference?

$$w_0 = \frac{\lambda}{\pi NA} \sqrt{1 - NA^2}$$

very different confocal lenght/interaction length

two main techniques

- fs-laser micromachining/microstructuring
- microfabrication via two-photon polymerization

fs-laser microstructuring experimental setup

microstructuring polymer: super hydrophobic surface

laser microfabrication: super hydrophobic surface

examples of fabricated surfaces

fs-laser micromachining

Volume

Generation of Ag nanoparticles

Generation of Ag nanoparticles

Absorption spectrum of the Ag:BBO sample as prepared (a), after irradiation with the 5 MHz fs-laser (b) and after irradiation with the amplified fs-laser (1 kHz) and subsequent thermal treatment.

Waveguides fabrication

Sample:

Ag:P7W3

Tungsten lead pyrophosphate glass - (70Pb₂P₂O₇-30WO₃):1AgCl (%mol)

Waveguides fabricated using the 5-MHz laser system (50 fs) with 37 nJ/pulse and $\,v$ = 10 $\,\mu m/s$

Waveguides fabrication

Coupling light into the waveguides

structuring amorphous Si surface

Experimental setup uses a pair of scanning mirrors

150 fs, 775 nm, 1 KHz, v = 5 mm/s, f= 20 cm

structuring amorphous Si surface

AFM micrographs of aSi microstructures at different laser intensities

structuring amorphous Si surface

Micro-Raman analysis reveals the crystallization of the aSi upon fslaser irradiation

Two-photon polymerization

Monomer + *Photoinitiator* → *Polymer*

100 fs

Photoinitiator is excited by two-photon absorption

The polymerization is confined to the focal volume.

Two-photon polymerization setup

Ti:sapphire laser oscillator

- 50 fs
- 800 nm
- 80 MHz
- 20 mW

Objective

40 x 0.65 NA

Two-photon polymerization

30 μ m x 30 μ m x 12 μ m cube

two-photon polymerization

Microstructure fabricated by two-photon polymerization

Two-photon polymerization

Microstructures fabricated by two-photon polymerization

Doping microstructures

Microstructures containing active compounds

- Fluorescence
- Electro Luminescent
- Conductive

Do we have waveguiding in the microstructure?

waveguiding of the microstructure fabricated on porous silica substrate (*n*= 1.185)

Applications: micro-laser; fluorescent microstructures; conductive microstructures

3D cell migration studies in micro-scaffolds

SEM of the scaffolds

110 µm pore size

52 µm pore size

Top view

110, 52, 25, 12 μm pore size

Side view

25, 52 μm pore size

50 μm pore size

110 μm pore size

 $52~\mu m$ pore size

3D cell migration studies in micro-scaffolds

to study bacterial growth it was needed to develop double doped microstructures

microstructure containing Fluorescein and Rhodamine

- (a) SEM of a double-doped microstructure (top view).
- (b) Confocal fluorescent microscopy image of the same microstructure.

Study the development of E. coli in micro-environments:

micro-environment in which the central structure contains antibiotic.

Study the development of E. coli in micro-environments:

after 3 hours, we observed that a small region around the doped structure does not show bacterial growth.

such inhibition zone was analyzed by determining the bacterial density in concentric rings

the density of bacteria grows monotonically with r_i

saturating when r_i reaches approximately 12 μm in about 0.7 bacteria/ μm^2

the inhibition zone has a maximum range of approximately 10 µm, being more effective as one gets closer to the microstructure impregnated with ciprofloxacin

Bacteria microtraps

using micro-environments to study the dynamics of bacterial migration

Bacteria microtraps

using micro-environments to study the dynamics of bacterial migration

Optical circuit

Optical circuit

- microfabrication
- silica nanowires
- coupling microstructures

nanowires fabrication process

standard fiber

nanowires fabrication process

nanowires fabrication process

Silica nanowires $70 \mu m$ $1 \, \mu m$

coupling light into nanowires

fiber taper

silica nanowire

Silica nanowires

coupling light into nanowires

Silica nanowires

coupling light into nanowires

Acknowledgments

Team

Daniel S Correa Marcos R Cardoso Juliana Almeida Adriano Otuka Gustavo Almeida Vinicius Tribuzi Ruben Fonseca **Renato Martins** Paulo H. D. Ferreira

www.fotonica.ifsc.usp.br

