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how short is a femtosecond pulse ?
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Introduction

how short is a femtosecond pulse ?
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high intensities pulse shaping




fs-laser micromachining

Ti:Sapphire lasers

100 fs 50 fs 20 fs

Very intense light

Laser intensities ~ 100 cw/cm?
1 x 10"W/cm?

Laser pointer: 1 mW/cm? (1 x10-3 W/ cm?)



fs-laser micromachining

Ti:Sapphire lasers

100 fs 50 fs 20 fs

Very intense light

Nonlinear Optical Phenomena



fs-laser microfabrication

photon energy < bandgap

nonlinear interaction



fs-laser microfabrication

nonlinear interaction

gap




fs-laser microfabrication

nonlinear interaction

gap A

E:=hv

multiphoton absorption



Multi-photon absorption

Nonlinear interaction provides spatial confinement of the excitation

fs-microfabrication

linear nonlinear
absorption absorption
-

a=a, a=a,+ pl



femtosecond pulses

Ti:Sapphire lasers 1fs =10"%s
100 fs 50 fs 20 fs
Repetition rate 1 Energy
—>| |e—
1 KHz mJ
100 fs
12 ns
—>| |e—
86 MHz nJ

100 fs



femtosecond pulses

amplified laser oscillator

1 ms 12 ns

l
T

repetitive cumulative



two main techniques

» fs-laser micromachining

* microfabrication via two-photon polymerization



fs-laser micromachining
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fs-laser microstructuring experimental setup
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Generation of Ag nanoparticles

Ag nanoparticles are generated only
in the irradiated area due to the
fs-laser induced photoreduction

Free electron generation

Photoreduction reaction
Agt+e > Ag°




Generation of Ag nanoparticles

Silver doped barium borate glass (Ag:BBO)

Sample after irradiation with the amplified
fs-laser (1 kHz) and subsequent thermal
treatment at 400 C for 1 h

Sample after irradiation with
the 5 MHz fs-laser




Generation of Ag nanoparticles

Absorbance

0.0 1 1 1 | |
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Wavelength (nm)

Absorption spectrum of the Ag:BBO sample as prepared (a), after irradiation with the 5 MHz
fs-laser (b) and after irradiation with the amplified fs-laser (1 kHz) and subsequent thermal
treatment.



fs-laser waveguides fabrication




Waveguides fabrication

Sample:

Ag:P7W3

Tungsten lead pyrophosphate glass - (70Pb,P,0,-30W0QO,):1AgCl (%omol)

Waveguides fabricated using the 5-MHz laser system (50 fs) with 37 nd/pulse and v
=10 uym/s

Top view

Cross-section
view




Waveguides fabrication

Coupling light into the waveguides

_ ceD
microscope
objective sample
632.8 nm ' /
G L
L )

translation stages

image of the waveguide output

measured waveguide loss L = 1.3 dB/mm



‘ Structuring amorphous silicon films




structuring amorphous Si surface

Experimental setup uses a pair of scanning mirrors

r—=—"71

Focusing lens

O= i Silicon sample

Clark MXR

Scanning mirrors

F————=—=—=—=—===—=-% = =-=

150 fs, 775 nm, 1 KHz, v =5 mm/s, f=20 cm



structuring amorphous Si surface

AFM micrographs of aSi microstructures at different laser intensities

before irradiation

E =5 ud/pulse

| 290nm E=8 ]JJ/pl-”Se

- 0nm




structuring amorphous Si surface

Counts

400 450 500 550 600
Raman Shift (cm™)

Micro-Raman analysis reveals the crystallization of the aSi upon fs-
laser irradiation



structuring amorphous Si surface

The crystalline volume fraction

x 1 i o |

in which /_, and /,, are the intensities of the crystalline
peak and at the center of the amorphous band

Pulse energy | X.(%) | Raman peak Nanocrystal

(nJ) (cm) diameter (nm)
4 0 - -
5 43 519 9
6 48 518 6
8 62 517 5
10 o 516 4




structuring amorphous Si surface

AFM image of a a-Si:H sample irradiated with 5 pJ (a)
and its corresponding segmentation obtained using the
Voroni’s diagram method (b).




structuring amorphous Si surface

Number of domains
= w P
Number of domains
= N

h (nm)

h (nm)

Number of domains
N N
Number of domains

30
h (nm) h (nm)

Height histograms of the domains on the sample surface
(a) before laser irradiation

(b)E= 4 ud
(c)E= 5ud
(d)E=6 ud



fs-laser microfabrication

fabrication of microstructure using fs-laser
and nonlinear optical processes




Two-photon polymerization

Monomer + Photoinitiator — Polymer

w

light

Photoinitiator is excited by two-photon absorption

............ I Rypyocd ’

I The polymerization is confined
to the focal volume.

High spatial resolution



Two-photon polymerization

1.0

intensity (abr. units)
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bellow the diffraction limit



Two-photon polymerization

1.0

intensity (abr. units)

polymerization
threshold

-400 0 400
radial distance (nm)

-800

800

even higher spatial resolution



Two-photon polymerization setup

Ti:sapphire laser oscillator

Z 50 fs
— *« 800 nm
80 MHz

ilumination

objective « 20 mW

=

J \

CCD 1

Obijective

y
— Movable 40 x
800nm, 50 fs mirrors 0.65 NA



Two-photon polymerization




Resin preparation

Monomers
Monomer A Monomer B

0 CH,—CH,—0—C—CH=CH,

CHE{O—CHI—CHE}*O—C—CHZCHI r|v (|)|
2 OZT/" \C=0
I
CH;— CH, C_CHI_{O_CHI_CHI}EO_C_CH=CH1 CHg:CH—ﬁ—O—CH;—CHZ—N\\C/N_Cﬂz_Cﬂz_0_ﬁ_CH=CH2
0 I 0

[] 0

CH;‘{O—CHI—CHQ}EO—C—CH:CHI

reduces the shrinkage upon polymerization gives hardness to the polymeric structure

Photoinitiator

Lucirin TPO-L

CHs
o]
[l
HaC C ﬁ O=CHy=CHs
o}
CHg

Appl. Phys. A, 90, 633-636 (2008)



Two-photon polymerization

130fs
| G
Ti:sapphire \
800 nm
I objective
monomer
glass

30 um x 30 ym x 12 ym cube

lass

g




Two-photon polymerization

After the fabrication, the sample is
>/ immersed in ethanol to wash away
— !L\ any unsolidified resin and then dried




two-photon polymerization

Microstructure fabricated by two-photon
polymerization




Guiding bacterial growth in a micro-environment




Guiding bacterial growth in a micro-environment

to study bacterial growth it was needed to develop
double doped microstructures

microstructure containing Fluorescein and Rhodamine

(a) SEM of a double-doped microstructure (top view).
(b) Confocal fluorescent microscopy image of the same
microstructure.



Guiding bacterial growth in a micro-environment

Study the development of E. coli in micro-environments:

micro-environment in which the central structure contains antibiotic.

Y " NH

N N
Ciprofloxacin



Guiding bacterial growth in a micro-environment

Study the development of E. coli in micro-environments:

after 3 hours, we observed that a small
region around the doped structure does not
show bacterial growth.

such inhibition zone was analyzed by
determining the bacterial density in
concentric rings




Guiding bacterial growth in a micro-environment

1.00 r r
;.é‘
57T I the density of bacteria grows
O . e— * - . .
g P monotonically with r,
e //'
8 ps0 b P .
5 / saturating when I reaches
3 / approximately 12 um in about 0.7
o / .
S : 2
Z 5| 2 ] bacteria/pum
5 /
O /X

/.;

//
D.00 e o I ! I 1

the inhibition zone has a maximum range of approximately 10 um, being more
effective as one gets closer to the microstructure impregnated with ciprofloxacin



Guiding bacterial growth in a micro-environment

Bacteria microtraps

using micro-environments to study the dynamics
of bacterial migration



Guiding bacterial growth in a micro-environment

Bacteria microtraps




Guiding bacterial growth in a micro-environment

Bacteria microtraps

60 ,

40

20

Average number of bacteria per trap

Time (min)

using micro-environments to study the dynamics
of bacterial migration



Shaping fs-pulses




shaped fs pulses

Can we used shaped fs-pulses to drive a given optical
phenomenon to a specific results ?

L E(t)
I W‘i - 0 .
S > (W +

. m selectivity?
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E(t) 7



shaped fs-pulses

fs-pulses present a broad spectral band

(t) ()
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We take advantage of the
broad spectral band to shape
the pulse in the frequency
domain




Pulse-shaping

input pulse shaped pulse
SLM

To generate pulses that are able to control optically-induced processes

To compensate for distortions in the pulses



Pulse-shaping for coherent cog

input pulse ’M‘

liquid crystal display

Wwwﬁhaped pulse




Pulse-shaping for coherent COREe!

spectrum
phase

spectrum
phase

—>  pulse shaper =—>

wavelength
wavelength

i
0,8-
06
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0,2-

0= ] ] i I
=200 =100 0 100 200
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I ] i I
=200 -100 0 100 200

By changing the pulse
shape we can alter the
results of an experiment



Pulse-shaper

Reflection system

output
pulse

N
|

Input
pulse

/Z

.




Shaping the pulse

How to define which pulse shape to use ?

Learning algorithms Defined phase masks



Coherent control: defined phasesx

t=30"fs
A =800 nm

f=1kHz
| fs-laser | —> Pulseshaper —> experiment
,.J k

pulse tailored pulse

D(0) =1 (o)




Coherent control: learning algorithm

input pulse

= -

fitness

_______._
3 .
o
|l =
)
0
=

SLM

——

shaped pulse




Genetic Algorithm

Evolution

initial

population \




The physics of coherent coOntrol

multi-photon absorption induced by ultrashort
pulses

(w)

A

{ f broad spectral band
o

Wo

distinct photons of the pulse can promote
two-photon absorption (nondegenerate)

multi-photon intrapulse interference



The physics of coherent contrel

() Multi-photon intrapulse interference

L)
‘ ho,

Wo

Distinct combinations of photons of the same B
pulse can lead the system to a final state
through different pathways

It is needed to “shape” the phase v

Of the leIse Ground state




1) control of MEH-PPV photodegradation
2) control of emission in Y-shaped molecules
3) control of Au nanoparticles formation in chitosan



absorbance

1.00

2.0

CH,CH,

|
OCHCHICH LCH,

- 0.75

= 0.50

= 0.25

300

400 500 600 700
wavelength (nm)

. conductive
and luminescent polymer
with interesting properties
for applications

However, MEH-PPV photo-bleaches due to a photoxidation
reaction, causing a decrease in its emission



30fs sample

N : pulse | .
Ti:sapphire 3

D(w)=acos (yow—0)

a=0.18n
y=38fs

0=0—->4n

detector

Measured
1 - two-photon excited emission as a function of the phase-mask

2 - photodegradation for distinct phase masks
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12 FTL -

11 b ~

intensity (arb. units)

control depth: 15 %

The emission with FTL pulses is ~ 25% higher than the one with the phase mask
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S® oc JE(a)) EQw,—w)do| do,
0

E(e) = A() exp [iAo)] / o \

' EQ2w, —w) E(w)

For a molecular system it is needed to include the integral on the 2PA
spectrum g(2w,)
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0




Control of MEH-PPV photodegradati

intensity (arb. units)

1.2

2

S o Jg(Z(UU ) da,

J E(w) EQCow,—w)do
0

modeling of the coherent control



1.3 T T
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1.2 = -

measuring the
photobleaching rate with
three diferent phase-masks

1.1

intensity (arb. units)
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fluorescence intensity (arb. units)

0.20

fime (minutes)

photobleaching rate decreases 3 times for the phase-masked pulses




Control of MEH-PPV photodegradation

fluorescence intensity (arb. units)

0.98

0.86

0.594

ngz2

0.80

time (minutes)

pairs in phase

()

all in phase

cosine-like mask: smaller amount of molecules is excited — less photobleaching



1.00 T T T
H-TPM i H-TPM . M-TPP
N . .
A Q / \\ Optimize the two-photon excited
S N emission of Y-shaped molecules
8 N\-.,*(/N—CHg \ N CHy using GA
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Understanding the coherent control on the 2PA in molecular systems
can lead to the development of new strategies to enhance ONL
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specific molecular features affect the control over the 2PA process



Intra pulse multi-photon interference
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Pulse shaping

pulse

k Pulse shaper

creating a pulse train

o(w) =asin(tw+ o)

Q, =27/

m

frequency

jL

time



Control of Au nanoparticles formati

varying the period of the sinusoidal phase mask
D(w) = a sin(yw + §)

generate pulse trains with distinct separation time
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Control of Au nanoparticles formation

Energy (cm™)
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lower frequencies are related
to peripheral groups (OH and
NH,), which are propably
related to the gold
photoreduction
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for a copy of this presentation
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