Fabrication and optical connection of 3D microstructures

outline

introduction

fs-micromachining

superhydrophobic surfaces production of nanoparticles in glass scaffolds for biological applications

fs-laser microfabrication

two-photon polymerization birefringent microstructures fluorescent microstructures connection with silica nanowires micro structres with ZnO nanowires micro- environment for bacterial growth

introduction

short pulse duration \rightarrow high intensity

(even at low energy)

photon energy < bandgap

nonlinear interaction

nonlinear interaction

nonlinear interaction

multiphoton absorption

Two-photon absorption

Nonlinear interaction provides spatial confinement of the excitation

fs-microfabrication

$$\alpha = \alpha_0 \qquad \alpha = \alpha_0 + \beta I$$

focus laser beam inside material

femtosecond pulses

Ti:Sapphire lasers

$$1 \text{ fs} = 10^{-15} \text{ s}$$

Repetition rate

1 KHz

Energy

mJ

86 MHz

nJ

femtosecond pulses

amplified laser

oscillator

repetitive

cumulative

fs-micromachining

microfabrication can be controlled by

- objective NA
- number of pulses scanning speed
- pulse energy

two main techniques

- fs-laser micromachining
- microfabrication via two-photon polymerization

fs-laser micromaching

fs-laser microstructuring experimental setup

laser microfabrication: super hydrophobic surface

examples of fabricated surfaces

laser microfabrication: super hydrophobic surface

Superhydrophobic surfaces

flat surface

microstructured surface

Generation of Cu nanoparticles

Generation of Cu nanoparticles

Absorption spectrum of the sample

A: as-prepared sample

B: sample after fs-laser irradiation

Generation of Cu nanoparticles

Optical microscopy showing the regions in the bulk where Cu nanoparticles were produced

TEM image of the nanoparticles

Monomer + *Photoinitiator* → *Polymer*

Photoinitiator is excited by *two-photon absorption*

$$R_{2PA} \propto I^2$$

The polymerization is confined to the focal volume.

High spatial resolution

Two-photon polymerization setup

Ti:sapphire laser oscillator

- 130 fs
- 800 nm
- 76 MHz
- 20 mW

Objective

40 x 0.65 NA

Resin preparation

Monomers

Monomer A

$$CH_{2} \leftarrow CH_{2} - CH_{2} - CH_{2} - CH = CH_{2}$$

$$CH_{3} - CH_{2} \quad CH_{2} \leftarrow CH_{2} - CH_{2} - CH_{2} - CH = CH_{2}$$

$$CH_{3} - CH_{2} \quad CH_{2} \leftarrow CH_{2} - CH_{2} - CH_{2} - CH = CH_{2}$$

reduces the shrinkage upon polymerization

Monomer B

gives hardness to the polymeric structure

Photoinitiator

Lucirin TPO-L

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Appl. Phys. A, 90, 633-636 (2008)

30 μ m x 30 μ m x 12 μ m cube

After the fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried

Microstructures fabricated by two-photon polymerization

Microstructures containing active compounds

Applications of two-photon polymerization

Optics and Photonics

Doping microstructures with organic molecules and metals

fluorescence birefringence conductivity

Bio-applications

Fabrication using bio-compatible resins to biological applications

tissue engineering scaffolds fabrication of microneedle cell study

microstructures for optical storage

orientation mechanism in azochromophores

after writing

optically induced **birefringence**

Resin composition: acrylate resin + HEMA DR13

microstructure fabricated by twophoton polymerization containing HEMA DR13

setup to measure the optically induced birefringence

WRITING

Pump beam: Argon ion at 514 nm

READING

Probe beam: HeNe at 632.8 nm

Result demonstrating the induction of birefringence in the microstructure

Microstructures containing Rhodamine

Rhodamine 6G

$$H_3C$$
 O
 O
 CH_3
 O
 CH_3
 O
 CH_3

- High luminescence
- Used as dye laser gain medium

Microstructure containing Rhodamine

fabrication of array of doped microstructures

SEM

Confocal microscopy

Optical circuit

nanowires fabrication process

standard fiber

nanowires fabrication process

nanowires fabrication process

Silica nanowires 70 μm 1 μm

coupling light into nanowires

fiber taper

silica nanowire

coupling light into nanowires

coupling light into nanowires

coupling light into nanowires

Microstructures with ZnO nanowires

Microstructures with ZnO nanowires

Microstructures with ZnO nanowires

Guiding bacterial growth in a micro-environment microfabrication of multidoped microstructures

Guiding bacterial growth in a micro-environment

to study bacterial growth it was needed to develop double doped microstructures

microstructure containing Fluorescein and Rhodamine

Guiding bacterial growth in a micro-environment

Study the development of E. coli in micro-environments:

micro-environment in which the central structure contains antibiotic.

Guiding bacterial growth in a micro-environment

Study the development of E. coli in micro-environments:

after 3 hours, we observed that a small region around the doped structure does not show bacterial growth.

Summary

Acknowledgments

Dr. Daniel Souza Correa (Embrapa)

Dr. Leonardo De Boni (IFSC/USP)

Dr. Marcos R. Cardoso

Vinicius Tribuzi

Juliana M. P. Almeida

Adriano J. G. Otuka

Ruben D. F. Rodriguez

Gustavo F. B. Almeida

Nathalia Tomazio

FAPESP

CAPES

CNPq

www.fotonica.ifsc.usp.br

