

Ultrashort laser pulse trains to enhance the induced Au nanoparticles formation

P. H. D. Ferreira, J. P. Siqueira, L. Misoguti, I. A. Heisler, C. R. Mendonca

Instituto de Física de São Carlos Universidade de São Paulo

Outline

Motivation for coherent control

Mechanism of coherent control

Pulse shaping

Results: control of Au nanoparticles formation

Conclusions

Conventional methods of chemical control

Microscopically catalysis

Coherent Control

How to change a chemical reaction pathway and make different products?

Use a light with a given frequency to excite the chemical bond we would like to break.

Intramolecular Vibrational Redistribution

excite one bond

the bond vibrates

After a few fs the entire molecule is vibrating

IVR occurs on a few-fs, therefore long pulses excite the entire molecule, and the weakest bond breaks, no matter which bond was excited.

Coherent control: using shaped fs pulses

Can we used fs-pulses to cause a molecular vibration in such a way that a chosen bond is broken ?

Nonperturbative nonlinear optics: strong field regime

The pulse electric field perturbs the molecule and can dissociates it

The required electric field of the pulse needs to be properly chosen

Perturbative nonlinear optics

Using multi-photon absorption to excite a molecular system

induce photoreaction

multi-photon absorption induced by ultrashort pulses

broad spectral band

distinct photons of the pulse can promote two-photon absorption (**nondegenerate**)

multi-photon intrapulse interference

Multi-photon intrapulse interference

Distinct combinations of photons of the same pulse can lead the system to a final state through different pathways

```
It is needed to "shape" the phase of the pulse
```


Theory for coherent control

The complete Hamiltonian for the system needs to be known

It might be possible to solve the problems for **VERY** simple system/molecules

Pulse-shaping for coherent control

To generate pulses that are able to control optically-induced processes

To compensate for distortions in the pulses

Pulse-shaping for coherent control

Pulse-shaping for coherent control

Pulse-shaper

Reflection system

How to define which pulse shape to use ?

Learning algorithms

Defined phase masks

Coherent control: defined phase masks

Photo-reduction

excition laser used was a KMLabs - Dragon (multipass amplifier)

au = 30 fs $\lambda = 800 \text{ nm}$ f = 1 kHzE = 2 mJ

sample absorption spectrum before and after irradiation

Results

Gold nanoparticles – TEM images

FTIR spectra of the samples

indicates that the reduction of the gold ions for the formation of the gold nanoparticles is related to the oxidation of hydroxyl groups in chitosan to carbonyl groups

to determine the the dynamics of nanoparticles formation

I= 12 x 10 ¹¹ W/cm²

Coherent control

creating a pulse train

varying the period of the sinusoidal phase mask $\emptyset(\omega) = \alpha \operatorname{stn}(\gamma \omega + \delta)$

generate pulse trains with distinct separation time

$$N_{periods} = 4$$

 $t_{sep} = 106 \text{ fs}$

$$N_{periods} = 11$$

 $t_{sep} - 291$ fs

lower frequencies are related to peripheral groups (OH and NH_2), which are propably related to the gold photoreduction

Coherent control methods seems to be an interesting option for the synthesis of gold nanoparticles production

www.fotonica.ifsc.usp.br

Thank you !

for a copy of this presentation

http://www.photonics.ifsc.usp.br

presentation

