Sculpturing with light: micro/nanofabrication using ultrashort pulses

focus laser beam on material's surface

superhydrophobic surfaces

azopolymeric films micromachined with 100 ps pulses at 532 nm

examples of fabricated surfaces

flat surface

microstructured surface

photon energy < bandgap

nonlinear interaction

nonlinear interaction

nonlinear interaction

multiphoton absorption

focus laser beam inside material

curved waveguides inside glass

3D waveguides in PMMA

Applied Surface Science, 254, 1135–1139 (2007)

Optics Express, 16, 200-205 (2008)

cut a single fiber bundle inside a cell

I. Maxwell, E. Mazur – Harvard University

Cut a single fiber bundle inside a cell

I. Maxwell, E. Mazur – Harvard University

Novel concept:

build a microstructure using fs-laser and nonlinear optical processes

photonic crystal – J. W. Perry

applications

- micromechanics
- waveguides
- microfluidics
- biology
- optical devices

Outline

- two-photon polymerization microfabrication
- microstructures containing MEH-PPV
- waveguiding the MEH-PPV emission
- other studies
- summary

Nonlinear Optics

high light intensity

nonlinear polarization response

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

Two-photon absorption

Two-photon absorption

Nonlinear interaction provides spatial confinement of the excitation

fs-microfabrication

Two-photon absorption

spatial confinement of excitation

Monomer + Photoinitiator \rightarrow Polymer

light

Photoinitiator is excited by two-photon absorption

bellow the diffraction limit

even higher spatial resolution

Two-photon polymerization setup

Ti:sapphire laser oscillator

- 130 fs
- 800 nm
- 76 MHz
- 20 mW

Objective

40 x 0.65 NA

Resin preparation

Monomers

reduces the shrinkage upon polymerization

gives hardness to the polymeric structure

Appl. Phys. A, 90, 633–636 (2008)

30 µm x 30 µm x 12 µm cube

After the fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried

Microstructures fabricated by two-photon polymerization

Microstructures containing active compounds

MEH-PPV

Conductive

MEH-PPV: up to 1% by weight laser power 40 mW

- **a** Scanning electron microscopy
- **b,c** Fluorescence microscopy of the microstructure with the excitation OFF (b) and ON (c)

d - Emission of the microstructure (black line) and of a film with the same composition (red line)

Fluorescent confocal microscopy images in planes separated by 16 μ m in the pyramidal microstructure.

Appl. Phys. Lett 95, 113309 (2009)

glass microstructure microstructure low index

waveguiding of the microstructure fabricated on porous silica substrate (n= 1.185)

Applications: micro-laser; fluorescent microstructures; conductive microstructures

20 µm

• microstructures for optical storage – birefringence

J. Appl. Phys., 102, 13109-1-13109-4 (2007)

microstructures for optical storage – birefringence

Ar+ ion laser irradiation

• 514.5 nm

- one minute
- intensity of 600 mW/cm²

microstructures for optical storage – birefringence

The sample was placed under an optical microscope between crossed polarizers and its angle was varied with respect to the polarizer angle

microstructures for optical storage – birefringence

• microstructures containing biopolymer - chitosan

• 3D cell migration studies in micro-scaffolds

SEM of the scaffolds

52 µm pore size

110, 52, 25, 12 µm pore size

Top view

Side view

25, 52 µm pore size

12 μ m pore size

• 3D cell migration studies in micro-scaffolds

Advanced Materials, 20, 4494-4498 (2008)

Summary

Applied Physics Letters (submitted)

Acknowledgments

FAPESP CAPES CNPq NSF ARO

www.fotonica.ifsc.usp.br

for a copy of this presentation

www.fotonica.ifsc.usp.br

