

Resonant Nonlinear Absorption in J-aggregates of meso-tetrakis(sulfonatophenyl) porphyrin

L. De Boni¹, P.J. Gonçalves², N. M. B Neto³, I. E. Borissevitch⁴, S.C. Zilio¹

Instituto de Física de São Carlos, Universidade de São Paulo
Instituto de Física, Universidade Federal de Goiás
Instituto de Física, Universidade Federal de Uberlândia,
Departamento de Física e Matemática, Universidade de São Paulo

Outline

- **×** Motivation
- **×** Molecule background
- **×** Experimental setup
- × Results
- **×** Conclusion

Motivation

Porphyrins

Photodynamics therapy

Study and understand the population dynamics in aggregated samples

Sample

✓ meso-tetrakis(sulfonatophenyl) porphyrin

The Pulse Train Z-scan Technique

Sheik-Bahae, M. et al., IEEE J. Quantum Elect. 1990, 26, 760-769

Experimental Results

Results and Discussions

✓ Triplet states are not considered

$$\frac{dn_0}{dt} = -W_{01}n_0 + \frac{n_1}{\tau_{10}}$$
$$\frac{dn_1}{dt} = W_{01}n_0 - W_{12}n_1 - \frac{n_1}{\tau_{10}}$$
$$\frac{dn_2}{dt} = W_{12}n_1 - \frac{n_2}{\tau_{21}}$$

Absorption coefficient $\alpha(t) = n_0 \sigma_{01} + n_1 \sigma_{12}$

Results and Discussions

✓ Triplet states are considered

*n*₁

 au_{isc}

$$\begin{aligned} \frac{dn_0}{dt} &= -W_{01}n_0 + \frac{n_1}{\tau_{10}} \\ \frac{dn_1}{dt} &= W_{01}n_0 - W_{12}n_1 - \frac{n_1}{\tau_{10}} + \frac{n_2}{\tau_{21}} \frac{-n_1}{\tau_{isc}} \\ \frac{dn_2}{dt} &= W_{12}n_1 - \frac{n_2}{\tau_{21}} \\ \frac{dn_3}{dt} &= -W_{34}n_3 + \frac{n_4}{\tau_{43}} + \frac{n_4}{\tau_{43}} \\ \frac{dn_4}{dt} &= w_{34}n_3 - \frac{n_4}{\tau_{43}} \end{aligned}$$

Absorption coefficient $\alpha(t) = n_0 \sigma_{01} + n_1 \sigma_{12} + n_3 \sigma_{34}$

Results and Discussions

TABLE. Photophysical parameters obtained for J-aggregate and monomer of TPPS₄.

Sample	σ_{01} 10 ⁻¹⁷ cm ²	$\frac{\sigma_{12}}{10^{-17} \mathrm{cm}^2}$	σ_{34} 10 ⁻¹⁷ cm ²	$rac{\sigma_{12}}{\sigma_{01}}$	$\frac{\sigma_{_{34}}}{\sigma_{_{01}}}$	τ _{s1} ns	τ _{isc} ns	$arphi_{isc}$	$arphi_{fl}$	$arphi_{ic}$
Monomer ^a	0.8	7.4	7.6	9.25	9.25	3.6	10	0.36	0.16	0.48
J-aggregate	2.0	6.5	3.5	3.25	1.75	0.105 ^b	1.4	0.08	0.001^{b}	0.92

(a) Gonçalves, P. J.; De Boni, L.; Barbosa Neto, N. M.; Rodrigues Jr., J. J.; Zilio, S. C.; Borissevitch, I. E. Chem. Phys. Lett. 2005, 407, 236-241.

(b) Miura, A.; Shibata, Y.; Chosrowjan, H.; Mataga, N.; Tamai, N.; J. Phototochem. Photobiol. A 2006, 178, 192-200.

Conclusion

aggregates formation x monomer

- reduction in τ_{s1} , τ_{isc} ;
- increases in σ_{01} at 532 nm, however, there is a decrease in σ_{12} and σ_{34} ;
- decreases in σ_{12}/σ_{01} ~ 3 folds and σ_{34}/σ_{01} ~ 9 folds;
- strong decreases in ϕ_{isc} from 0.36 to 0.08
- it's still having RSA effect

In summary

Aggregates decreases the intersystem crossing yield: not important for PDT;

• An increase in the vibronic relaxation reduces the lifetimes of the states and reflect in an increase of the internal conversion pathway;

• Could be used as a fast optical limiter;

Acknowledgements

Thank you

