Sculpturing with light: micro/nanofabrication using ultrashort pulses focus laser beam on material's surface superhydrophobic surfaces azopolymeric films micromachined with 100 ps pulses at 532 nm ## examples of fabricated surfaces ## Superhydrophobic surfaces flat surface microstructured surface photon energy < bandgap nonlinear interaction ## nonlinear interaction #### nonlinear interaction multiphoton absorption #### focus laser beam inside material curved waveguides inside glass Novel concept: build a microstructure using fs-laser and nonlinear optical processes photonic crystal – J. W. Perry applications - micromechanics - waveguides - microfluidics - biology - optical devices #### Outline - two-photon polymerization microfabrication - microstructures containing MEH-PPV - waveguiding the MEH-PPV emission - other studies - summary ## **Nonlinear Optics** high light intensity nonlinear polarization response $$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$ ## Two-photon absorption $$\alpha = \alpha_0 + \beta I$$ Third order processes $\chi^{(3)}$ ## Two-photon absorption Nonlinear interaction provides spatial confinement of the excitation fs-microfabrication $$\alpha = \alpha_0 \qquad \alpha = \alpha_0 + \beta I$$ # Two-photon absorption spatial confinement of excitation *Monomer* + *Photoinitiator* → *Polymer* Photoinitiator is excited by two-photon absorption $$R_{2PA} \propto I^2$$ The polymerization is confined to the focal volume. High spatial resolution ## Two-photon polymerization setup Ti:sapphire laser oscillator - 130 fs - 800 nm - 76 MHz - 20 mW Objective 40 x 0.65 NA ## Resin preparation #### Monomers #### **Monomer A** $$CH_{2} \leftarrow CH_{2} - CH_{2} - CH_{2} - CH = CH_{2}$$ $$CH_{3} - CH_{2} \quad C - CH_{2} \leftarrow (O - CH_{2} - CH_{2}) - (C - CH = CH_{2})$$ $$CH_{3} - CH_{2} \quad C - CH_{2} \leftarrow (O - CH_{2} - CH_{2}) - (C - CH = CH_{2})$$ $$CH_{2} \leftarrow (O - CH_{2} - CH_{2}) - (C - CH = CH_{2})$$ reduces the shrinkage upon polymerization #### **Monomer B** gives hardness to the polymeric structure #### **Photoinitiator** #### **Lucirin TPO-L** $$H_3C$$ CH_3 CH_3 CH_3 CH_3 CH_3 Appl. Phys. A, 90, 633-636 (2008) $30 \ \mu m \ x \ 30 \ \mu m \ x \ 12 \ \mu m \ cube$ After the fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried Microstructures fabricated by two-photon polymerization # Microstructures containing active compounds ## **MEH-PPV** Fluorescence Electro Luminescent Conductive MEH-PPV: up to 1% by weight laser power 40 mW - a Scanning electron microscopy - **b,c** Fluorescence microscopy of the microstructure with the excitation OFF (b) and ON (c) d - Emission of the microstructure (black line) and of a film with the same composition (red line) Fluorescent confocal microscopy images in planes separated by 16 μm in the pyramidal microstructure. ### Microstructures containing MEH-PPV waveguiding of the microstructure fabricated on porous silica substrate (*n*= 1.185) Applications: micro-laser; fluorescent microstructures; conductive microstructures microstructures for optical storage – birefringence $$\vec{P}_{dye}$$ $$\vec{E}$$ $$\text{trans}$$ $$\vec{E}$$ $$\text{trans}$$ $$\vec{E}$$ microstructures for optical storage – birefringence microstructures for optical storage – birefringence The sample was placed under an optical microscope between crossed polarizers and its angle was varied with respect to the polarizer angle microstructures for optical storage – birefringence J. Appl. Phys., 102, 13109-1-13109-4 (2007) • microstructures containing biopolymer - chitosan J. Nanoscience and Nanotechnology (in press) 3D cell migration studies in micro-scaffolds SEM of the scaffolds 110 µm pore size 52 µm pore size Top view 110, 52, 25, 12 µm pore size Side view 25, 52 µm pore size 110 μm pore size $52 \mu m$ pore size 3D cell migration studies in micro-scaffolds # Summary Applied Physics Letters (submitted) ## Acknowledgments FAPESP CAPES CNPq NSF ARO www.fotonica.ifsc.usp.br