Sculpturing with light: micro/nanofabrication using ultrashort pulses

focus laser beam on material's surface

superhydrophobic surfaces

azopolymeric films micromachined with 100 ps pulses at 532 nm

examples of fabricated surfaces

Superhydrophobic surfaces

flat surface

microstructured surface

photon energy < bandgap

nonlinear interaction

nonlinear interaction

nonlinear interaction

multiphoton absorption

focus laser beam inside material

curved waveguides inside glass

Novel concept:

build a microstructure using fs-laser and nonlinear optical processes

photonic crystal – J. W. Perry

applications

- micromechanics
- waveguides
- microfluidics
- biology
- optical devices

Outline

- two-photon polymerization microfabrication
- microstructures containing MEH-PPV
- waveguiding the MEH-PPV emission
- other studies
- summary

Nonlinear Optics

high light intensity

nonlinear polarization response

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

Two-photon absorption

$$\alpha = \alpha_0 + \beta I$$

Third order processes $\chi^{(3)}$

Two-photon absorption

Nonlinear interaction provides spatial confinement of the excitation

fs-microfabrication

$$\alpha = \alpha_0 \qquad \alpha = \alpha_0 + \beta I$$

Two-photon absorption

spatial confinement of excitation

Monomer + *Photoinitiator* → *Polymer*

Photoinitiator is excited by two-photon absorption

$$R_{2PA} \propto I^2$$

The polymerization is confined to the focal volume.

High spatial resolution

Two-photon polymerization setup

Ti:sapphire laser oscillator

- 130 fs
- 800 nm
- 76 MHz
- 20 mW

Objective

40 x 0.65 NA

Resin preparation

Monomers

Monomer A

$$CH_{2} \leftarrow CH_{2} - CH_{2} - CH_{2} - CH = CH_{2}$$

$$CH_{3} - CH_{2} \quad C - CH_{2} \leftarrow (O - CH_{2} - CH_{2}) - (C - CH = CH_{2})$$

$$CH_{3} - CH_{2} \quad C - CH_{2} \leftarrow (O - CH_{2} - CH_{2}) - (C - CH = CH_{2})$$

$$CH_{2} \leftarrow (O - CH_{2} - CH_{2}) - (C - CH = CH_{2})$$

reduces the shrinkage upon polymerization

Monomer B

gives hardness to the polymeric structure

Photoinitiator

Lucirin TPO-L

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Appl. Phys. A, 90, 633-636 (2008)

 $30 \ \mu m \ x \ 30 \ \mu m \ x \ 12 \ \mu m \ cube$

After the fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried

Microstructures fabricated by two-photon polymerization

Microstructures containing active compounds

MEH-PPV

Fluorescence
Electro Luminescent
Conductive

MEH-PPV: up to 1% by weight laser power 40 mW

- a Scanning electron microscopy
- **b,c** Fluorescence microscopy of the microstructure with the excitation OFF (b) and ON (c)

 d - Emission of the microstructure (black line) and of a film with the same composition (red line)

Fluorescent confocal microscopy images in planes separated by 16 μm in the pyramidal microstructure.

Microstructures containing MEH-PPV

waveguiding of the microstructure fabricated on porous silica substrate (*n*= 1.185)

Applications: micro-laser; fluorescent microstructures; conductive microstructures

microstructures for optical storage – birefringence

$$\vec{P}_{dye}$$

$$\vec{E}$$

$$\text{trans}$$

$$\vec{E}$$

$$\text{trans}$$

$$\vec{E}$$

microstructures for optical storage – birefringence

microstructures for optical storage – birefringence

The sample was placed under an optical microscope between crossed polarizers and its angle was varied with respect to the polarizer angle

microstructures for optical storage – birefringence

J. Appl. Phys., 102, 13109-1-13109-4 (2007)

• microstructures containing biopolymer - chitosan

J. Nanoscience and Nanotechnology (in press)

3D cell migration studies in micro-scaffolds

SEM of the scaffolds

110 µm pore size

52 µm pore size

Top view

110, 52, 25, 12 µm pore size

Side view

25, 52 µm pore size

110 μm pore size

 $52 \mu m$ pore size

3D cell migration studies in micro-scaffolds

Summary

Applied Physics Letters (submitted)

Acknowledgments

FAPESP CAPES CNPq

NSF ARO

www.fotonica.ifsc.usp.br

