Picosecond laser micromachining of azopolymers aiming at superhydrophobic surfaces

M. R. Cardoso, V. Tribuzi, D. T. Balogh, L. Misoguti and C. R. Mendonça

Departamento de Física e Ciência dos Materiais, Instituto de Física de São Carlos / USP, SP, Brasil, +55 (16) 3373-8085, crmendon@ifsc.usp.br http://www.fotonica.ifsc.usp.br

Introduction – Motivation

In nature some examples of superhydrophobic surfaces.

$\theta > 150^{\circ}$

S. H. Sunr, Y. S. Song, S. J. Lee and M. Sitti, "Biologically Inspired Miniature Water Strider Robot," *Proceedings of the Robotics: Science and Systems I*, Boston, U.S.A., 2005.

Michael P. Murphy^{*}, Seok Kim and Metin Sitti^{*} Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890 *ACS Appl. Mater. Interfaces*, Article ASAP

θ

DOI: 10.1021/am8002439

Nokia Morph Cellphone Rolls Up, Stretches, Cleans Itself http://research.nokia.com/files/insight/NTI_Nanoscience_-_Dec_2008.pdf

Outline

- Sample studied
- Methodology
- Results
- Summary
- Conclusion

Sample studied

UV-Vis absorption spectra of a chloroform solution (black) and film (red)

Methodology

The influence of pulse energy and translation speed on the micromachining was studied using optical and atomic force microscopy.

Optical microscope images of grooves produced on the sample at a translation speed of 1 mm/s and various pulse energies. The widths of the grooves vary from 1 to 4.7 μ m when the pulse energy is increased from 0.7 to 130 μ J.

The depths of the grooves were determined using atomic force micrographs, and are plotted as a function of pulse energy. The groove depth increases with increasing pulse energy.

Figure (a) shows a scanning electron microscopy of the microstructured film surface with a periodicity 10 μ m. Figures (b) and (c) show optical microscope images of the sample's surface microstructured with periodicities of 10 and 40 μ m, respectively.

The sample is coated with a layer of (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane

The contact angle of the water droplet on the flat surface is 115°, while on the microstructured surface the contact angle is 156°.

The contact angle of the water droplet on the flat surface is 115°, while on the microstructured surface the contact angle is 156°.

The contact angle of water on the microstructured surfaces as a function of the pattern periodicity is shown in the figure below. The wetting properties are very stable for the structure's periodicity until 35 μ m, maintaining the same superhydrophobic characteristic.

Summary

- Ablation threshold
 - Influence pulse energy
 - Translation speed

Superhydrophobicity thresholdWidth and space of grooves

We show that it is possible to increase the hydrophobicity of polymeric surfaces by ps-laser micromachining. Our results revealed an increase of 36% in the contact angle for water in the microstructured surface, reaching superhydrophobicity.

Acknowledgement: The authors acknowledge FAPESP, CNPq, CAPES and Air Force Office of Scientific Research (FA9550-07-1-0374) for financial support, and are grateful to André L. S. Romero for his assistance.

www.fotonica.ifsc.usp.br

