Optical Storage and Surface Relief Gratings in Azo-Compounds

Cleber R. Mendonça

University of São Paulo Instituto de Física de São Carlos Brazil

Azoaromatic compounds

photo-isomerization

polymersguest hostfunctionalized

Optical Devices

- Second Harmonic Generation
- Electro-Optic Effect
- Optical Storage
- Holographic Relief Gratings
- Slow Optical Modulators

•Study of the physical and chemical properties

Studied materials

Absorption spectra HPDR13

Absorption around 500nm

(a) CHCl₃ Solution(b) LB film

Red Shift: J-type aggregation anti-parallel aggregation.

Absorption spectra DR13 copolymer

Absorption around 500nm

J-type aggregation

(B) CHCl₃ Solution(C) LB film

Studied properties

- Trans-Cis-Trans Photisomerization
- Optical Storage
- Holographic Relief Gratings

Photo-isomerization

Birefringence and Dichroism

Isotropic Sample

Anisotropic Sample

Experimental Setup

HPDR13 in CHCl₃ Solution

P=80mW

trans-cis: 30ms

cis-trans: 18ms

LB film: HPDR13 and Cd St (75:25 w/w, 41 layers)

P=60mW

trans-cis: 30ms

cis-trans: slower

(trans-cis) Photoisomerization

biexponential behavior t_{fast} ≈ 20ms

(cis-trans) Thermal relaxation

biexponential behavior

Orientation mechanism

Photochemical trans-cis rate: $R = I \cos^2(\phi)$

Experimental setup

writing/erasing sequence

LB film: HPDR13 and Cd St (50:50 w/w, 100 layers)

A: writing beam switched ON

B: writing beam switched OFF

C: erasing beam switched ON

Dependence of Optical Storage Characteristics on the laser Power

LB film: HPDR13 and Cd St (50:50 w/w, 100 layers)

a: Amplitude of Optical Storage Saturation Behavior (2mW)

b: Time to write 50% decrease dramatically (2mW)

Dependence of the amplitude on the weight percentage of HPDR13

LB film: HPDR13 and Cd St (41 layers)

a: Amplitude of birefringence increases linearly with the weight percentage of HPDR13

Comparison with casting/spin coating films

LB film HPDR13 and Cd St 41 layers 75% of HPDR13 **Spin coating** PDR13a (similar to ourpolymer)

Δn=0.19

∆n=0.08

Ordering in the packing contributes to the optical induced birefringence

Dependence of the amplitude on the number of layers

LB film: HPDR13 and Cd St (50:50 w/w)

The maximum birefringence decreases with the number of layers

Related to the decrease in the ordering in the LB film

writing/erasing sequence

Copolymer LB films (15 layers) with different dye contents. (weight percentage)

(a) CoDR6 : 6% DR13
(b) CoDR29 : 29% DR13
(c) CoDR37 : 37% DR13
(d) CoDR57 : 57% DR13
(e) CoDR77 : 77% DR13

Dependence of the amplitude on the DR13 weight percentage

a: Amplitude of Optical Storage : nonlinear behavior
- thermal effect

b: Time to write 50%
decrease almost exponentially
- cooperative effect

Remaining birefringence as a function of DR13 weight percentage

Exponential decay with the dye content:

- cooperative motion

Optical storage in LBL

Layer-by-layer (LBL)

40 bilayers films

Optical storage in LBL

slower process

electrostatic interaction hampers molecular movement

Optical storage in LBL water effect

a: as depositedb: blowing water vapor few seconds

Entrapped water decrease the interaction between the sample components

Biocompatible samples

a: chitosan b: Ponceau-S

Film prepared in a LBL approach

Optical storage : solvent effect

Samples immersed in solvent for 20 s and then dried with $N_{\rm 2}$

increase in birefringence amplitude
decrease in writing time

Optical storage: solvent effect

Optical storage features change can be used as a sensor

Table 1. Solvent effect on the birefringence

Solvent	Dielectric constant	Birefringence increase (%)	Slope ratio	
Water	80	195	3.1	
Dimethylsulfoxide	38.3	126	2.1	
Ethylene glycol	37.7	123	2.3	
Methanol	33	108	1.9	
Chloroform	4.8	42	1.6	

Optical storage: solvent effect

Influence of the polymer rigidity on the optical storage

Table 1

Optical storage characteristics of 61-layer LB films from the azopolymers HPDR13, DR19-IPDI, DR19-MDI and 15-layer LB films from copolymers HEMA-DR13 with four distinct dye concentrations

	Chromophore content (%w/w)	Maximum Δn	$T_{50\%}^{\text{write}}$ (s)	Residual signal	$T_{50\%}^{\text{relax}}$ (s)	Tg (°C)	
HEMA-DR13	18	0.04	1.6	0.73	0.8	82	
HEMA-DR13	24	0.05	0.9	0.64	0.7	79	
HEMA-DR13	42	0.06	0.7	0.52	1.3	72	
HEMA-DR13	64	0.07	0.5	0.48	1.6	64	
HPDR13	83	0.12	1.0	0.35	3.0	56	
DR19-IPDI	59	0.013	0.8	0.70	0.6	138	
DR19-MDI	56	0.026	2.8	0.80	0.9	145	

2D Optical storage

We selected MDI (cast film)

Residual fraction 80 %

 $\Delta n = 0.03$

Not the best Δn , but an interesting residual rate

2D Optical storage

bi-dimensional optical storage

MDI

2D Optical storage

long-term memory

3D optical storage

 $\vec{P} = \chi^{(1)} \cdot \vec{E} + \chi^{(2)} \cdot \vec{E}\vec{E} + \chi^{(3)} \cdot \vec{E}\vec{E}\vec{E}\vec{E} + \dots$

Two-photon absorption

 $\alpha = \alpha_0 + \beta I$

β: two-photon absorption coefficient

two-photon induced birefringence: 3D optical storage

DR1

Two-photon absorption

Nonlinear interaction provides spatial confinement of the excitation

3D optical storage

 $\lambda = 532 \text{ nm} \text{ I} = 0.1 \text{ W/cm}^2$

 $\lambda = 775 \text{ nm} \text{ I} = 25 \text{ GW/cm}^2$

3D optical storage

Thick samples PMMA/DR13 (1x2x0.5 cm³)

Use two-photon excitation to induce molecular orientation

Taking advantage of the spatial localization of excitation

Optical storage and surface relief gratings

• Study of optically induced birefringence (molecular orientation) in azopolymers

Grating formation mechanism

The force density exerted on the dipole molecule is: $f = \langle (P(\mathbf{r}, t) \cdot \nabla) E(\mathbf{r}, t) \rangle$

Facilitated by the photoisomerization

Worm like movement

Experimental setup

AFM 3D- topography image

LB film: HPDR13 and Cd St (100 layers 50:50 w/w)

P=180mW/cm² p-polarized

grating spacing: 2.6µm peak-valey height: 50-60nm

AFM phase image

The CdSt domains have moved along with HPDR13 molecules

Two types of material with different viscoelasticity.

Experimental setup

p - polarized

s - polarized

Polarization in the direction of the intensity gradient

Surface relief grating in LBL films

both polymers move together

Diffraction of a probe beam to monitor the grating formation

We are able to microstructure the polymer surface using only cw lasers

Conclusion

- Possible to control the optical storage
 - using different polymeric matrix
 - using different azodyes
 - using distinct fabrication methods
 - application in sensors
 - 2D optical storage with long-term
 - 3D optical storage using two-photon absorption

• Surface relief gratings using low-power cw laser