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ultrashort laser pulses
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ultrashort laser pulses
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Emission spectra of the Ti:Sapphire laser 

oscillator in CW and ML modes 
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• chirp
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• wide spectral band

– Control nonlinear process 

and photo-reactions

• Short temporal duration

– High light intensity

– Allows nonlinear effects
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ultrashort pulses
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Target

Coherent control

General idea: use the broad spectral band of ultrashort pulses to direct a given optical 

process



Coherent control

Distinct combinations of 

photons of the same pulse 

can lead the system to a 

given final state through 

different pathways

How does that actually work ?



nonlinear effects are observaded with high intensities

P

 High intensities

Charges:

Anharmonic Oscillator

Erad.Einter.

Nonlinear optics
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1961:

– Second Harmonic Generation (SHG), Franken et al.

Ruby laser beam (694.2nm)  Quartz Crystal (SiO2)  Laser light (347.1nm)

– Two-photon Absorption (2PA), Kaiser and Garret

Ruby laser beam (694.2nm)  Eu2:CaF2+ Crystal  Fluorescent light (425 nm)
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Nonlinear optics



Two-photon absorption (2PA) process

Phenomenon does not described for the Classical Physics and does not 

observed until the development of the Laser.

1-photon absorption

(Linear)

2-photon absorption

(Nonlinear)

Theoretical model: Maria Göppert-Mayer, 1931

Two photons from an intense laser light beam are simultaneously absorbed

in the same “quantum act”, leading the molecule to some excited state with

energy equivalent to the absorbed two photons.

Maria Göppert-Mayer was

born June 28th 1906 in

Kattowitz. In 1963 she

received the Nobel Prize in

Physics.



Two-photon absorption

Amos, W.B. & White, J.G. (2003)
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 Microscopy by 2PAEF

 3D Microfabrication by 2PA
(Polimerization)

Applications of 2PA

3D Imagems obtained

via 2PAEF

Cell Human chromosome

Nature 412, 697-698 (2001)

Bull Mass-spring system 



Applications of 2PA

Given all the applications of 2PA, it seems to be interesting to be able to 

directly control it

Just playing with the fs-pulse “shape”



Manipulating a two-photon process
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I´ll have to “shape” the phase profile of the pulse



Shaping the pulses
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Transmission setup Reflection setup



Shapping the pulses
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Ultrashort pulse shaping technique

Experimental setup for ultrashort pulse 

shaping technique using deformable mirror
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Shaping the ultrashort pulse in the phase domain.

MMDM is a 600 nm gold-coated silicon nitride membrane (8

mm x 30 mm) suspended over an array of 19 actuator

electrodes on a printed circuit board. Potential applied to the

actuator creates an electrostatic attraction between the

membrane and the electrode, deforming the mirror surface.

The MMDM is placed at the Fourier

plane of a zero dispersion stretcher

consisting of a 600 grove/mm ruled

grating and a 25 cm focal-length mirror.

Micromachined deformable mirror (MMDM)



Shapping the pulses
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How to define which shape to use ?

Genetic Algorithm Phase Mask
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Shaping the pulse +  computer algorithm

In this case, the process is optimized but the mechanism is not well understood
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Optimization of two-photon induced fluorescence
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Optimization of two-photon induced fluorescence

What is happening with the pulse during its evolution
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Optimization of the two-photon induced fluorescence



Feedback Signal

Nonlinear transmittance

Z-Scan technique

(Nonlinear absorption)

Optimization of two-photon induced thermal lens
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Optimization of two-photon induced thermal lens
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Optimization of two-photon induced thermal lens
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In this case, we impose a known phase mask function to the ultra-short pulse
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• Two-photon absorption transition is given by
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Phase Mask

Anit-symmetric phase mask: S2 is independent of the phase

Symmetric phase mask: S2 is minimized
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Controlling the MEH-PPV photo-degradation

MEH-PPV: conductive and 

luminescent polymer with 

interesting properties for 

applications

However, MEH-PPV photo-bleaches due to a photoxidation 

reaction, causing a decrease in its emission
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Controlling the MEH-PPV photo-degradation

Observe the two-photon excited emission as a function of the phase-mask

Observe the photodegradation for distinct phase masks



Controlling the MEH-PPV photo-degradation



FTL

 = 0.5 

 =1 

Controlling the MEH-PPV photo-degradation

0.1 %/min

0.07 %/min

0.3 %/min

Photobleaching rate is smaller for the phase-masked pulses



Coherent control of molecular orientation

Use fs-laser (broad band) to induce

two-photon absorption and,

consequently, molecular orientation

(optical storage)

Coherently control the molecular

orientation



Coherent control of molecular orientation



Coherent control of molecular orientation



Coherent control of molecular orientation



 Pulse shaping methods + coherent control of the nonlinear interaction seems to be

an interesting method to further control nonlinear optical processes.

Conclusions



Thanks for your attention!!!


