Femtosecond micromachining in polymers

Prof. Dr Cleber R. Mendonca Daniel S. Corrêa Prakriti Tayalia Dr. Tobias Voss Dr. Tommaso Baldacchini Prof. Dr. Eric Mazur

focus laser beam inside material or on its surface

photon energy < bandgap

nonlinear interaction

nonlinear interaction

nonlinear interaction

multiphoton absorption

it is important to understand the nonlinear interaction, as well as the nonlinear response of organic compounds and polymers

applications:

- data storage
- waveguides
- microfluidics
- biology

Polymers and organic materials

Outline

Introduction to nonlinear optics

fs-micromachining microstructuring MEH-PPV waveguides in azopolymers

two-photon polymerization birefringent microstructures fluorescent microstructures biocompatible microstructures

Linear optics

harmonic oscillator

linear response

$$P = \chi E$$

Nonlinear optics

high light intensity

anharmonic oscillator

nonlinear polarization response

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

two-photon absorption

two-photon absorption

Nonlinear interaction provides spatial confinement of the excitation

 $\alpha = \alpha_0$

 $\alpha = \alpha_0 + \beta I$

femtosecond pulses

femtosecond pulses

repetitive

cumulative

fs-pulses for micromachining polymers

Oscillator: 80 MHz, 5 nJ

heat diffusion time: $t_{diff} \sim 1 \ \mu s$

cumulative

fs-microfabrication

linear versus nonlinear absorption

fs-microfabrication

Nonlinear interaction provides spatial confinement of the excitation

 $\alpha = \alpha_0$

 $\alpha = \alpha_0 + \beta I$

two main techniques

fs-laser micromachining

ablation structural modification

microfabrication via two-photon polymerization

Micromachining the conductive polymer MEH-PPV

optical microscopy

a: 0.07 nJ **b:** 0.14 nJ **c:** 0.34 nJ **d:** 0.68 nJ

Micromachining the conductive polymer MEH-PPV

atomic force microscopy

Micromachining the conductive polymer MEH-PPV

Waveguides in azo-polymers

DR13

DR1

Waveguides in azo-polymers - photobleaching

Absorbance spectrum of PMMA films containing 3.5% by weight of (a) DO3, (b) DR1, and (c) DR13. The dashed lines show the absorbance after micromachining the films.

Waveguides in azo-polymers

- (a) Optical microscope image of the waveguides micromachined (PMMA/DR1)
- (b) Cross-sectional view of the waveguides

waveguides in azo-polymers

(c) Output image of the mode profile of 632.8-nm light coupled through the waveguide

photonic devices - wiring optoelectronics circuits of the future

3D wave splitter

photonic devices - wiring optoelectronics circuits of the future

3D splitter

Bragg grating

demultiplexer

laser active glass

amplifier

interferometer

Curved waveguides

microstructuring polymer: super hydrophobic surface

M.R. Cardoso and C. R. Mendonca

microstructuring polymer

microstructuring polymer

width and depth control

microstructuring polymer

flat surface

$\theta = 118^{\circ}$

Two-photon polymerization

Two-photon polymerization

even higher spatial resolution

Two-photon polymerization setup

Two-photon polymerization

Resin Preparation

Monomers

SR499

SR368

reduces the shrinkage upon polymerization

gives hardness to the polymeric structure

Photoinitiator

Two-photon polymerization

30 μm x 30 μm x 12 μm cube

Two-photon polymerization

After the fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried

Microstructures fabricated by two-photon polymerization

Microstructures containing active compounds

Applications of two-photon polymerization

Optics and Photonics

Doping microstructures with organic molecules and metals

fluorescence birefringence conductivity

Bio-applications

Fabrication using bio-compatible resins to biological applications

tissue engineering scaffolds fabrication of microneedle cell study

Applications

1) Optically induced birefringence

2) Emission and conduction

3) Biocompatible microstructure

Incorporating the azodye DR13 into the microstructure

Molecular orientation by excitation with linearly polarized light

After alignment

Optically Induced birefringence

Ar+ ion laser irradiation

- 514.5 nm
- one minute
- intensity of 600 mW/cm²

The sample was placed under an optical microscope between crossed polarizers and its angle was varied with respect to the polarizer angle

The structure is visible when the angle between the birefringence axis and the polarizer is an odd multiple of 45°

∆**n= 5x10**⁻⁵

This birefringence can be completely erased by irradiating the sample with circularly polarized light.

Applications: micro-optical switch, micro-optical storage

The structure is visible when the angle between the birefringence axis and the polarizer is an odd multiple of 45°

This birefringence can be completely erased by irradiating the sample with circularly polarized light.

Fluorescence Electro Luminescent Conductive

- (a) Scanning electron microscopy
- (b,c) Fluorescence microscopy of the microstructure with the excitation OFF (b) and ON (c)
- (d) Emission of the microstructure (black line) and of a film with the same composition (red line)

Fluorescent confocal microscopy images in planes separated by 16 μ m in the pyramidal microstructure.

waveguiding of the microstructure fabricated on porous silica substrate (n= 1.185)

Applications: micro-laser; fluorescent microstructures; conductive microstructures

20 µm

microstructures containing chitosan

Applications

biodegradability biocompatibility bone regeneration drug-delivery bactericide action blood coagulation

Microstructures show excellent integrity and good definition

3D cell migration studies in micro-scaffolds

schematic of the scaffold

SEM of the scaffolds 110 µm pore size

52 µm pore size

Top view

110, 52, 25, 12 μm pore size

Side view

25, 52 μm pore size cell migration

50 μm pore size

cell migration

$50\ \mu\text{m}$ pore size after 5 hours

c-d: 110, 52, 25 and 12 μm

fs-microfabrication is a great tool for designing polymerbased devices

http://www.fotonica.ifsc.usp.br

http://www.photonics.ifsc.usp.br

Acknowledgments

National Science Foundation Army Research Office FAPESP, CNPq and CAPES

http://www.fotonica.ifsc.usp.br

http://www.photonics.ifsc.usp.br

Thank you !

http://www.fotonica.ifsc.usp.br

http://www.photonics.ifsc.usp.br

