A novel photoinitiator for microfabrication via two-photon polymerization

C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia and E. Mazur

Outline

- Motivation
- Microstructures fabricated using Lucirin TPO-L
- Z-scan technique
- 2PA measurements and spectrum
- Molecular calculation
- Conclusions

Motivation

Two-photon polymerization allows the fabrication of complex microstructures for several application.

Usually, photoinitiators are added to the monomer to start the photopolymerization.

For this reason the 2PA cross-sections of photoinitiators have been extensively studied.

Here we study the 2PA process of Lucirin TPO-L, which has recently been shown to be a very efficient polymerization initiator under twophoton excitation

Resin composition for 2PA polymerization

SR499 ethoxylated(6) trimethyl-lolpropane triacrylate

$$CH_{2} \leftarrow \begin{pmatrix} O - CH_{2} - CH_{2} \end{pmatrix}_{2} O - C - CH = CH_{2}$$

$$CH_{3} - CH_{2} \qquad C - CH_{2} \leftarrow \begin{pmatrix} O - CH_{2} - CH_{2} \end{pmatrix}_{2} O - C - CH = CH_{2}$$

$$CH_{2} \leftarrow \begin{pmatrix} O - CH_{2} - CH_{2} \end{pmatrix}_{2} O - C - CH = CH_{2}$$

$$CH_{2} \leftarrow \begin{pmatrix} O - CH_{2} - CH_{2} \end{pmatrix}_{2} O - C - CH = CH_{2}$$

• reduces structural shrinkage

SR368 tris(2-hydroxyethyl)isocyanurate triacrylate

$$\begin{array}{c} c_{H_{2}-CH_{2}-O} - c_{C}-c_{H}=c_{H_{2}} \\ \\ o = c \\ c_{H_{2}-CH-C} - c_{C}-c_{C}-c_{H}=c_{H_{2}} \\ \\ c_{H_{2}-CH-C} - c_{C}-c_{C}-c_{H}=c_{H_{2}} \\ \\ c_{H_{2}-CH-C} - c_{C}-c_{$$

· confers hardness to the structure

Photoinitiator

Lucirin TPO-L

ethyl-2,4,6-Trimethylbenzoylphenylphosphinate

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Two-photon polymerization setup

Ti:sapphire laser oscillator

- 130 fs
- 800 nm
- 76 MHz
- 20 mW

Objective

40 x 0.65 NA

Scanning Electron Micrograph

Scanning electron micrograph of microstructures fabricated by 2PA polymerization

- (a) Top view
- (b) 30° tilted view of a complex hemispherical structure
- (c) Conical microstructures.

The microstructures show excellent integrity and high definition.

2PA characterization of Lucirin TPO-L

Solution of Lucirin TPO- L in ethanol

Nonlinear optical characterization (2PA) was performed using the Z-scan technique

Z-scan technique

Femtosecond laser system

 λ =775 nm; τ = 150 f; f= 1 KHz

OPA

460 - 2600 nm

≈ 120 fs

20-60 μJ

$$\alpha = \alpha_0 + \beta I$$

Two-photon absorption coefficient

$$\Delta T \propto \beta$$

Z-scan measurement

Z-scan signature of a 2PA process for Lucirin TPO-L at $\lambda = 720$ nm

$$\Delta T = 6\%$$
 $\beta = 0.0025 \text{ cm/GW}$

2PA Spectrum of Lucirin TPO-L

Molecular

calculations performed using semi-empirical methods

Lucirin TPO-L optimized geometry

LUMO Lowest Unoccupied Molecular Orbital

HOMO Highest Occupied Molecular Orbital

- nonplanar molecular structure
- small conjugation length
- charge localized in the central portion of the molecule

Explain the low 2PA coefficient of this photoinitiator

We measured the two-photon absorption cross-section of the photoinitiator Lucirin TPO-L and established a relation between the molecular structure of this photoinitiator and its nonlinear optical properties.

We fabricated microstructures with excellent structural integrity and definition, demonstrating the potential of Lucirin TPO-L for two-photon polymerization microfabrication.

Acknowledgments

This work was carried out with the financial support from FAPESP (Brazil), the National Science Foundation under contract DMI-0334984 and the Army Research Office under contract W911NF-05-1-0471.