Supplementary material

Paper: 'Mode cleaning in graphene oxide-doped polymeric whispering gallery mode microresonators', published at the Journal of Material Chemistry C (2020)

1- Absorbance spectrum for the acrylate polymer and for the GO-doped polymer in the near infrared:



For this analysis, the macroscopic samples were prepared as described in the experimental section of the paper.

## 2- Comparative table of values for the resonances indicated in the spectrum:

The contribution of material attenuation to the intrinsic Q-factor was calculated through:

$$Q_{mat} = \frac{2\pi n}{\lambda_0 \alpha},\tag{1}$$

where n,  $\lambda_0$  and  $\alpha$  denote the refractive index, the resonance wavelength and the material attenuation coefficient, respectively. The material attenuation coefficient for each resonance was obtained from absorbance measurements, as described in the paper.

The dependence of the intrinsic Q-factor  $(Q_{in})$  with the Q-factors associated with material attenuation  $(Q_{mat})$  and surface scattering  $(Q_{s.s.})$  is given by:

$$\frac{1}{Q_{in}} = \frac{1}{Q_{mat}} + \frac{1}{Q_{s.s.}}.$$
 (2)

 $Q_{in}$  determines the photon lifetime associated with intrinsic losses ( $\tau_0$ ) according to:

$$\tau_0 = \frac{2 Q_{in}}{\omega_0}.$$
(3)

The transmission response of the straight waveguide coupled to the microresonator at the frequency  $\omega$  is given by:

$$T(\omega) = T_0 \frac{(\omega - \omega_0)^2 + \left(\frac{1}{\tau_0} - \frac{1}{\tau_c}\right)^2}{(\omega - \omega_0)^2 + \left(\frac{\Delta\omega}{2}\right)^2},\tag{4}$$

which includes a sigmoid function to capture the asymmetry of the resonances:

$$\Delta \omega = \frac{4\left(\frac{1}{\tau_0} + \frac{1}{\tau_c}\right)}{1 + \exp\left[\alpha(\omega - \omega_0)\right]}.$$
(5)

In the Eq. 4 and 5,  $T_0$  is an offset correction factor,  $\omega_0$  is the resonance frequency,  $\alpha$  is the asymmetry factor and  $\tau_0$  and  $\tau_c$  are the lifetimes associated with power dissipation through intrinsic losses in the microresonator and through coupling losses, respectively.

The values represented in the following tables were obtained by calculating  $Q_{mat}$  with the help of Eq. 1, and by fitting each resonance to Eq. 4. E.R. stands for the resonance extinction ratio.

## Undoped microresonator spectrum:



| resonance | linewidth<br>in pm | E. R. | asymmetry<br>factor<br>in ps | $1/	au_0$ in ns <sup>-1</sup> | $1/\tau_c$ in ns <sup>-1</sup> | <i>Q</i> <sub><i>s.s.</i></sub> | Q <sub>mat</sub> |
|-----------|--------------------|-------|------------------------------|-------------------------------|--------------------------------|---------------------------------|------------------|
| 1         | 120                | 0.472 | 0                            | 41.6                          | 6.6                            | 16000                           | 193700           |
| 2         | 108                | 0.456 | 2.4                          | 37.7                          | 5.7                            | 17800                           | 193600           |
| x         | 95                 | 0.21  | 0                            | 36.0                          | 2.1                            | 18710                           | 193600           |
| 3a        | 98                 | 0.61  | 0                            | 32.0                          | 7.4                            | 21370                           | 193600           |
| 3b        | 53                 | 0.49  | 0                            | 18.3                          | 3.0                            | 40700                           | 193600           |
| 4         | 77                 | 0.495 | 5.1                          | 26.4                          | 4.5                            | 26400                           | 193500           |
| 6         | 86                 | 0.805 | 3.4                          | 24.8                          | 9.7                            | 28370                           | 193400           |
| 7         | 96                 | 0.826 | 3.4                          | 27.2                          | 11.3                           | 25600                           | 193300           |
| 8         | 99                 | 0.445 | 6.2                          | 34.6                          | 5.0                            | 19440                           | 193200           |
| 9         | 82                 | 0.722 | 0                            | 24.9                          | 7.8                            | 28200                           | 193200           |
| 10        | 89                 | 0.604 | 0                            | 28.8                          | 6.7                            | 23900                           | 193100           |
| 11        | 150                | 0.390 | 2.2                          | 53.5                          | 6.5                            | 12190                           | 193100           |
| 12        | 126                | 0.303 | 0                            | 46.1                          | 4.2                            | 14270                           | 193000           |
| 14        | 174                | 0.548 | 0.4                          | 58.0                          | 11.7                           | 11180                           | 192900           |
| 15        | 110                | 0.275 | 0                            | 40.6                          | 3.2                            | 16380                           | 192800           |
| 16        | 81                 | 0.332 | 0                            | 29.4                          | 2.8                            | 23350                           | 192800           |
| 17        | 103                | 0.836 | 3.4                          | 28.8                          | 12.2                           | 23900                           | 192700           |
| 18        | 96                 | 0.429 | 1.8                          | 33.5                          | 4.7                            | 20160                           | 192700           |

## GO-doped microresonator spectrum:

For Polarization 1:



| resonance | linewidth<br>in pm | E. R. | asymmetry<br>factor<br>in ps | $1/	au_0$ in ns <sup>-1</sup> | $1/\tau_c$ in ns <sup>-1</sup> | <i>Q</i> <sub><i>s.s.</i></sub> | Q <sub>mat</sub> |
|-----------|--------------------|-------|------------------------------|-------------------------------|--------------------------------|---------------------------------|------------------|
| 4         | 134                | 0.758 | 6                            | 38.9                          | 14.8                           | 19840                           | 77400            |
| 9         | 133                | 0.577 | 2.2                          | 44.1                          | 9.1                            | 16990                           | 77300            |
| 12        | 268                | 0.454 | 2.2                          | 92.9                          | 13.9                           | 7210                            | 77200            |
| 14        | 70                 | 0.183 | 0.8                          | 26.5                          | 1.3                            | 32970                           | 77100            |
| 16        | 218                | 0.163 | 0.1                          | 82.9                          | 3.7                            | 8157                            | 77000            |

## For Polarization 2:



| resonance | linewidth<br>in pm | E. R. | asymmetry<br>factor<br>in ps | $1/	au_0$ in ns <sup>-1</sup> | $1/\tau_c$ in ns <sup>-1</sup> | <i>Qs.s.</i> | Q <sub>mat</sub> |
|-----------|--------------------|-------|------------------------------|-------------------------------|--------------------------------|--------------|------------------|
| 3         | 102                | 0.694 | 0                            | 31.8                          | 9.1                            | 25790        | 77400            |
| 6         | 300                | 0.412 | 0                            | 105.9                         | 14.2                           | 6270         | 77300            |
| 10        | 94                 | 0.372 | 0                            | 33.6                          | 3.9                            | 23890        | 77200            |
| 11        | 223                | 0.275 | 0.5                          | 82.3                          | 6.6                            | 8240         | 77200            |

The impact of the incorporation of GO on each resonance's linewidth and extinction ratio was evaluated through the variation of its transmission curve in response to an increase of intrinsic losses. For that, we adjusted the material attenuation and the surface scattering contribution to the Q-factor of each individual resonance to match both  $Q_{mat}$  and the  $Q_{s.s.}$  that are expected with the incorporation of GO to the microresonator.

Let us take the resonances 17 and 18 of the undoped microresonator spectrum as an example. Their  $Q_{s.s.}$  and  $Q_{mat}$  are:

| resonance | <i>Q</i> <sub><i>s.s.</i></sub> | $Q_{mat}$ |
|-----------|---------------------------------|-----------|
| 17        | 23900                           | 192700    |
| 18        | 20160                           | 192700    |

To simulate the presence of GO, the  $Q_{s.s.}$  of the resonances 17 and 18 was adjusted to 19840 and to 8240, and their  $Q_{mat}$  was adjusted to 77400 and 77200, respectively. By doing that, the resonances transmission curve resulted in the black curve of the graph below.

